Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order Citation

نویسندگان

  • Chen
  • Xie
  • Zheng-Cheng Gu
  • Xie Chen
  • Xiao-Gang Wen
چکیده

Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Two gapped quantum ground states in the same phase are connected by an adiabatic evolution which gives rise to a local unitary transformation that maps between the states. On the other hand, gapped ground states remain within the same phase under local unitary transformations. Therefore, local unitary transformations define an equivalence relation and the equivalence classes are the universality classes that define the different phases for gapped quantum systems. Since local unitary transformations can remove local entanglement, the above equivalence/universality classes correspond to pattern of long-range entanglement, which is the essence of topological order. The local unitary transformation also allows us to define a wave function renormalization scheme, under which a wave function can flow to a simpler one within the same equivalence/universality class. Using such a setup, we find conditions on the possible fixed-point wave functions where the local unitary transformations have finite dimensions. The solutions of the conditions allow us to classify this type of topological orders, which generalize the string-net classification of topological orders. We also describe an algorithm of wave function renormalization induced by local unitary transformations. The algorithm allows us to calculate the flow of tensor-product wave functions which are not at the fixed points. This will allow us to calculate topological orders as well as symmetry-breaking orders in a generic tensor-product state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation in entanglement renormalization group flow of a gapped spin model

We study entanglement renormalization group transformations for the ground states of a spin model, called cubic code model HA in three dimensions, in order to understand long-range entanglement structure. The cubic code model has degenerate and locally indistinguishable ground states under periodic boundary conditions. In the entanglement renormalization, one applies local unitary transformatio...

متن کامل

Tensor-product representations for string-net condensed states

Citation Gu, Zheng-Cheng et al. " Tensor-product representations for string-net condensed states. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We show that gene...

متن کامل

Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. In this work, we present some new understanding of topological order, including three main aspects. (1) It was beli...

متن کامل

Complete classification of one-dimensional gapped quantum phases in interacting spin systems Citation

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Quantum phases with different orders exist with or without breaking the symmetry of the system. Recently, a classif...

متن کامل

Braiding Operators are Universal Quantum Gates

This paper is an exploration of the role of unitary braiding operators in quantum computing. We show that a single specific solution R of the Yang-Baxter Equation is a universal gate for quantum computing, in the presence of local unitary transformations. We show that this same R generates a new non-trivial invariant of braids, knots, and links. The paper discusses these results in the context ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010